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Abstract. Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells,

have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have

focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific

immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of

immune cells, however, is important for the development of more efficacious cancer immunotherapies.

It is well established that the basis and premise of immunotherapy is the accumulation of effective

immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to

optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine

receptors in the immune system has increased our knowledge of the regulatory mechanisms of the

immune response and tolerance based on immune cell localization. Here, we review the immune cell

recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of

immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors,

and their use in cancer immunotherapy.

KEY WORDS: adenovirus vector; cancer immunotherapy; cell-based system; cell recruitment;
chemokine; chemokine receptor; dendritic cell.

INTRODUCTION

Cancer cells are Fself_ cells that have bypassed normal
homeostatic regulatory mechanisms. Immunotherapy is a
promising approach for the development of integrative
therapies for cancer (1–3). Combined with other approaches,
immunotherapy can be an effective tool for the treatment of
malignant disease. Recent findings indicate that a multifac-
torial strategy might be the best strategy for treating cancer
(4–6). Surgery, chemotherapy, and radiotherapy are effective
for reducing tumor burden, and immunotherapy might effec-
tively be used to attack residual tumor cells to reduce the risk
of recurrent disease and metastasis, and prolong patient
survival (7–10).

Studies in animal models and in clinical trials have
demonstrated that immune cell infiltration of tumors is
associated with improved survival of patients with a variety
of cancers (11,12). Investigations of the relationship between
prognosis and the infiltration frequency of tumor-associated
immune cells in patients with cancer indicate that posttreat-

ment recurrence or metastasis is significantly suppressed in
cases that exhibit high immune cell infiltration (especially
CD8 T cells) in the primary tumor tissue (13–16). On the
basis of this knowledge, cancer immunotherapy has steadily
progressed toward clinical application and various approaches
have been developed, such as adoptive transfer of tumor
specific cytotoxic T lymphocytes (CTLs) and the administra-
tion of tumor-associated antigen (TAA)-component vaccine,
genetically modified tumor cell-based vaccine, TAA-coding
DNA vaccine, or TAA-delivered dendritic cell (DC)-based
vaccine (17–24). The principal objective of most conventional
studies of cancer immunotherapy has been efficient induction
and activation of effector cells. Even with adequate induction
of effector cells that kill tumor cells in a patient, the efficacy
of the cancer immunotherapy would be considerably limited
if the effector cells were unable to infiltrate the tumor tissue
and come into contact with the tumor cells. Therefore
innovative approaches to better control the accumulation of
immune effector cells in tumor tissue are needed to overcome
the limitations of the current therapies and to improve the
cancer cure rate.

Currently, many research programs focus on one part of
immunotherapy, i.e., the enhancement of immune cell
recruitment and the use of a cell-based system to control
the distribution of immune effector cells in the body and to
enhance antitumor immunity. Compared to a drug delivery
system, which delivers the optimal amount of drug to the
target site and subsequently elicits its effects via a chemical
compound or biologic macromolecules such as plasmid
DNA, small interference RNA, or antisense nucleotides
(25–28), a cell-based system, which uses smart cells existing
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in the body as the therapeutic agent, is a more intriguing and
potentially more promising approach for cancer therapy.

Many factors influence the biodistribution of cells in the
body; among them, a type of cytokine, chemokines, have
been extensively investigated (29–31). Chemokines are small,
secreted basic proteins that were originally discovered in
1987 and have many different roles (32). The chemoattractive
and promotive properties of chemokines on the effector
functions of different leukocyte subpopulations, such as T
cells, natural killer (NK) cells, and DCs, in vitro and in vivo,
have led to numerous studies on the effects of chemokines in
the development of antitumor immune responses (33–40).
Moreover, because different chemokines migrate towards
different immune cells, the development of optimal carriers
and transduction of chemokines to tumor cells might enhance
tumor immunity by inducing the accumulation of various
immune cells and their subsequently secreted cytokines.

Alternatively, a cell-based system using DCs modified by
specific genes to manipulate their migration and accumulation
could be developed. DCs are antigen-presenting cells with the
unique ability to initiate and maintain primary immune
responses when pulsed with antigens (41–43). Dendritic cells
are sentinels in an immature state with a high endocytic and
phagocytic capacity. Several recent studies have tested the
interesting concept of chemoattraction of DCs in vivo to bring
DCs and tumor cells/antigens into direct contact (44–47).

CANCER IMMUNOTHERAPY AND ITS USE
IN CLINICAL TRIALS

Whether the immune system can actually target tumors
has been debated for nearly a century (48,49). Compelling
evidence now suggests that immune cells have an important
role in the control of malignant diseases (50). Augmentation
of the immune response produces therapeutic benefits, not
only in experimental models but also in clinical trials with
cancer patients. Furthermore, advances in cellular and
molecular immunology in the past two decades have provid-
ed enormous insights into the nature and consequences of the
interactions between tumors and immune cells and have
suggested strategies by which the immune system might be
harnessed to treat established tumors (51).

The challenge of developing cancer immunotherapy is
one of the longest standing goals of immunology, dating back
to the late nineteenth century with the use of Coley_s toxins
(52). In the first real attempt to use non-specific immuno-
therapy, bacterial products were used to treat cancers.
Currently, the notion of immunosurveillance against tumors
is attracting great interest. There is no doubt that the immune
system can be experimentally manipulated to enhance
antitumor activity. In general, immunotherapy is used as an
adjuvant treatment for cancer, together with surgery, chemo-
therapy, or radiotherapy, and it has been tested in various
cancers (53–55).

The use of immunotherapy for the treatment of cancer
can broadly be divided into two categories, therapies that are
tumor-specific and highly targeted and therapies that modu-
late the immune system, but in a non tumor-specific way.
There are several reviews summarizing selected recent
immunotherapy clinical trials for cancer (56–58). Despite
many setbacks, recent developments have rejuvenated the

sense of optimism in cancer immunotherapy. Almost 30 years
after their development, monoclonal antibodies are now com-
monly used in the treatment of selected malignancies. Current
immunotherapeutic approaches to treating cancer patients
include systemic administration of tumor cell-targeting mono-
clonal antibodies, adjuvant cytokine treatment, or various
vaccination protocols (59–61). For example, the use of low-
dose interleukin (IL)-2, either alone or in combination with
other cytokines, is widely used throughout Europe (62,63).
Similarly, granulocyte-macrophage colony-stimulating factor
(GM-CSF) has become the cytokine of choice because of its
DC-maturing properties (64). Also, gene therapy is currently
being used to create recombinant cancer vaccines. Autolo-
gous or allogeneic cells are harvested and grown in vitro and
then engineered with the addition of one or more genes that
make the vaccine more recognizable to the immune system
(65). Another novel strategy facilitated by gene therapy is to
alter the patient_s immune system make it more sensitive to
the cancer cells. One such approach uses mononuclear
circulating blood cells or bone marrow collected from the
patient (66). A tumor antigen, or other stimulatory gene, is
then added to the selected cell type. These altered cells are
then primed to cause an immune reaction to the cancer cells
leading to cancer eradication. Alternatively, the gene can be
added in vivo using a targeted delivery system, such as an
altered viral particle (67).

An exciting result was obtained recently with a synthetic
version of the bacterial DNA CpG motif that binds to Toll-
like receptors (TLR)9. In a phase IIb trial, late-stage non-
small cell lung cancer patients treated with a TLR9 agonist,
Promune, in combination with standard of care cisplatin
chemotherapy had an 80% increase in median survival (68).
The advantages of a cancer vaccine-based approach include:
(1) the ability to target both surface and intracellular tumor
antigens through the induction of polyclonal cellular and
humoral responses; (2) the potential for a response of greater
longevity and therefore obviating the need for long-term
multiple injections; (3) no requirement for Bhumanization^ of
the immune response; and (4) lower production cost (69).
More than 50 vaccines are under clinical testing now and
more than 400 cancer vaccine studies have been performed
(69). Vaccines using engineered cells are promising for the
treatment of many cancers that respond poorly to convention-
al therapy. Recently, a phase I/phase II trial with GVAX, a
vaccine made from autologous tumor cells modified to express
GM-CSF resulted in 3 of 33 patients experiencing complete
remission and an additional 7 patients who achieved stable
disease for an average of 7 months (70). Another phase II
study in advanced stage patients demonstrated a clinical
effect with 14 of the 53 participants experiencing stable
disease and 1 patient experiencing stable disease for over
2 years (71). On the other hand, T lymphocyte infusion
adoptive transfer of ex vivo expanded autologous T cell
populations has been continuously tested and improved for
many years. In a later trial, polyclonally activated CD8+ cells
derived from autologous tumoral tissues were infused in
combination with a low dose of IL-2. The results indicated
that the survival rate was 65% at 1 year after nephrectomy
and the overall median survival was 22 months (72).

There are still a few areas of current clinical trials,
however, that need to be improved (57). For example, many
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of the most promising vaccines that rely on autologous cells
for vaccine production might also present a long-term
problem because of the expense and effort needed to create
the vaccine. Few hospitals contain the facilities for vaccine
production and substantial time and expertise are required
to grow the cells and create a custom vaccine (73). One way
to overcome this problem is to create allogeneic alternative
vaccines (74). On the other hand, combining therapeutic genes
might lead to a stronger immune response than either gene
used alone. As with any cancer monotherapy, combination
therapy using vaccines might be more effective than vaccine
therapy alone.

Though it remains poorly understood how to harness
therapeutic chemoattractants and activators, the expression
of molecules such as tumor necrosis factor superfamily
member 14 (LIGHT) in tumor sites converts these micro-
environments into highly immunogenic structures (75).
Because cancer cells are Fself_ cells that have bypassed
normal homeostatic regulatory mechanisms, and because of
the specific characteristics of tumor tissue, it is difficult to
infiltrate a large number of effector cells into the tumor.
Insights into cellular and molecular events that lead to the
recruitment and activation of immune cells suggest that the
obstacles present at the tumor site might be overcome and
tumor immunity might be initiated by providing pro-inflam-
matory cytokines and/or chemokines to the sites of solid
tumors (76). There is some evidence that the presence of
tumor-infiltrating lymphocytes is a favorable prognostic sign.
In ovarian cancer, 5-year survival is significantly increased
(38% vs 4.5%) in patients whose tumor biopsy samples
contain CD3+ tumor-infiltrating lymphocytes compared with
patients whose biopsy samples lack these cells (77).
Therefore, to induce an efficient antitumor response, large
numbers of cells, such as T cells, NK cells, and DCs capable
of eliciting an effector response upon presentation and
activation by a tumor antigen, must be attracted to the
tumor site. Selected clinical trials with respect to immune cell
recruitment and related cancer immune therapies are listed
in Table 1. In this review, we focus on the immunity
modulation activity of chemokines and consider the use of
vectors encoding chemokines that can induce immune cell
recruitment. We also describe a cell-based system in which
chemokine genes are introduced into DCs for effective
cancer immunotherapy.

IMMUNE CELL RECRUITMENT AND CELL-BASED
SYSTEM FOR CANCER IMMUNOTHERAPY

Cell Migrating Molecules, Chemokines, Used in Cancer
Immunotherapy

Chemokines

The use of cytokines in cancer immunotherapy was first
reported more than 20 years ago, and the recent discovery of
chemokines (chemotactic cytokines), a new family of cyto-
kines with proinflammatory activities, has further enhanced
their therapeutic application. Chemokines serve as potent
chemoattractants for immune cells, and are involved in many
physiologic functions, such as inflammation, elimination of
infection, and tissue repair. Chemokines also have a role in

pathologic conditions, however, such as cardiovascular dis-
eases, allergy, and cancer (78).

Chemokines are comprised of a superfamily of small
(8–14 kDa), secreted basic proteins that regulate relevant
leukocyte migration and invasion into the tissue by interacting
with their specific receptors, which belong to the superfamily
of seven-transmembrane domain G protein-coupled receptors
(79–81). Chemokines, which can attract specific immune cells,
function in inflammatory disease sites as well as in normal
lymphoid tissues (82). To date, more than 50 chemokines have
been identified, and they are divided into four families—CC,
CXC, CX3C, and C. Each chemokine family member interacts
with a reciprocal family of G protein-coupled receptors
expressed almost exclusively on leukocytes. The expression
of chemokine receptors varies in mast cells, neutrophils, and
eosinophils, depending on their stage of differentiation and
activation status. Some chemokines, such as CCL9 and CCL10,
have angiostatic activity (83,84). These properties and the fact
that some tumor cells express lower chemokines levels than do
normal cells make chemokines an intriguing molecule for
cancer immunotherapy, based on the premise of the eradica-
tion of tumor cells as a consequence of interactions with
immune cells that have migrated and accumulated in the
tumor tissues. Several chemokines are candidates for cancer
treatment for use as sole agents or with an adjuvant.

Vector-Carried Chemokine Genes Used in Cancer
Immunotherapy

For immune cell recruitment, the delivery system used
in cancer immunotherapy should be comprised of effective
carriers, such as viral vectors or non-viral vectors and their
encoded genes, that can induce immune cell migration to
diseased tissues. Gene transfer carriers have an important
role in cancer gene therapy (85–87). Whereas viral vectors
have high gene transfer efficiency, non-viral vectors such as
liposomes and nanoparticles have low toxicity. Cytokines or
chemokines encoded by viral vectors are currently regarded
as promising tools for cancer gene immunotherapy (39,40).
Among the vectors used for cancer immunotherapy encod-
ing chemokine genes, the adenovirus (Ad) vector is most
often used.

The Ad vector, which has high gene transduction
efficiency and can infect both dividing and non-dividing cells,
is widely used as a carrier for gene therapy (88). The
therapeutic use of recombinant Ad vectors represents a new
chapter in the treatment of cancer. Recent studies demon-
strated the antitumor activity of Ad vectors encoding chemo-
kines introduced into tumor cells alone or together with
other cytokines (89–91). There are some limitations, how-
ever, associated with the use of conventional Ad vectors. One
disadvantage is that Ad vectors result in inefficient gene
transfer to many malignant cells lacking the Ad receptor. Ad
infection requires two sequential steps. First, the Ad-fiber
knob mediates attachment to the Coxsackievirus and adeno-
virus receptor (CAR) on the cell surface. Following binding,
internalization of the virion is facilitated by the interaction of
Arg–Gly–Asp (RGD) motifs located at the Ad-penton base
with secondary receptors, avb3 and avb5 integrin. The viral
particle then escapes from the endosome and translocates to
the nucleus. Based on the known mechanisms of this Ad-
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entry pathway, the relative resistance of some malignant cells
to Ad-mediated gene transfer was thought to be due to a lack
of or to low levels of CAR and/or av integrin expression on
the cells. Thus, the mRNA levels of CAR and integrin were
investigated using reverse transcription-polymerase chain

reaction and the analysis revealed that the relative resistance
of melanoma cells and DCs to Ad-mediated gene transfer is
due to the absence of CAR expression, and that melanoma
cells and DCs express adequate av integrins. To overcome
the low gene expression levels in CAR-negative cells, a fiber-
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mutant Ad vector developed by Mizuguchi et al. was used as
a carrier for the cell-based system (92,93). The Arg–Gly–Asp
(RGD) sequence was added to the recombinant adenovirus
vector in the fiber knob, which facilitated internalization of
the virion through receptor-mediated endocytosis via inter-
action of the fiber directly with avb3 and avb5 integrins. This
fiber-mutant Ad (Ad-RGD) vector possesses higher transduc-
tion and antitumor activities than conventional Ad vectors
when used in cytokine-gene therapy against B16BL6 melano-
ma, and it exhibits higher gene transfection efficiency in OV-
HM ovarian carcinoma and Meth-A fibrosarcoma (94–96).
CX3CL1-encoding fiber-mutant Ad and stromal cell-derived
factor (SDF)-1-encoding Ad were also developed and intra-
tumoral injection of these vectors effectively suppressed the
growth of preexisting tumors (97,98).

Compared to replication-incompetent Ad vectors, retro-
virus vectors generally maintain the ability to express genes
for a long time because the vector is integrated into the
genome. Sustained maintenance of therapeutic levels of
angiostatic proteins in tumor tissues is particularly important
in antiangiogenesis cancer therapy. Sun et al. utilized gene
transfer via replication-competent retroviral (RCR) vectors
for chronic protein delivery (99). They constructed RCR
vectors carrying the human IP10 gene; the results indicated
that the production of IP10 from RCR-transduced cells could
be maintained in culture for at least 3 months. The level and
duration of IP10 expression in vivo was sufficient to inhibit
the growth of subcutaneous tumors as well as metastatic lesions
in mice and the tumor inhibition correlated with the marked
reduction in tumor vascularization and mitotic activity.

On the other hand, plasmids with or without the com-
mercial transfection agent, Lipofectamine, were also used. For
example, transfection of the expression vector pCI-SDF-1 into
J558 myeloma cells produced biologically active SDF-1 in the
culture supernatants of cells, and SDF-1-expressing J558/SDF-
1 tumors invariably regressed in BALB/c mice and became
infiltrated with CD4+ and CD8+T cells (100). Another
nonviral, liposome-based MCP-1 gene transfer approach using
lipoplexes also demonstrated that nonviral MCP-1 gene

transfer significantly improved peripheral conductance as well
as the ratio of peripheral over aortic blood pressure when
compared to untreated controls 2 weeks after occlusion (101).

As gene carriers have a pivotal role in cancer gene
therapy, more attention must be paid to the vectors used in
developing an optimal delivery system according to the
therapeutic aims and the gene and tumor characteristics.

Immune Cell Recruitment and Therapeutic Effect
of a Delivery System Encoding Chemokines

Antitumor Effects and the Influence on the Distribution
of Immune Cells of Chemokine-Encoding Delivery System

There are several reported strategies for using chemo-
kines in cancer immunotherapy (102–104). Among them,
transfection of tumor cells in vitro and inoculation in vivo
and intratumoral injection of chemokine-encoding vectors
are used most frequently.

A certain chemokine changes the distribution of immune
cells in vivo and subsequently induces tumor suppression or
even disappearance. CXCL14 was significantly downregu-
lated in oral carcinoma cells when treated with epidermal
growth factor and the rate of tumor formation in vivo of
CXCL14-expressing vector-transfected tumor cells in nude
mice was significantly lower than that of mock vector-
transfected tumor cells (105). In addition, tumors formed in
vivo by the CXCL14-expressing cells were significantly
smaller than those formed by mock-transfected cells. These
results indicated that CXCL14 activity suppresses tumor
progression of oral carcinoma in vivo. The CXC chemokine
SDF-1alpha, which functions in vitro as a chemotactic factor
for lymphocytes, monocytes, and DCs, has antitumor effects
on various tumor cells. Fushimi reported that an SDF-1alpha-
encoded adenovirus, AdSDF-1alpha, mediates the expression
of SDF-1alpha mRNA and protein in A549 cells in vitro, and
the supernatant of the AdSDF-1alpha-infected A549 cells has
chemotactic activity towards DCs. When syngeneic murine
CT26 colon carcinoma tumors, B16 melanoma, and Lewis
lung cell carcinoma were injected with AdSDF-1alpha, DCs
and CD8+ cells accumulated within the tumor and tumor
growth was significantly inhibited compared with control
groups. The injection of AdSDF-1alpha into tumors induced
inflammation-related enlargement and the accumulation of
DCs in the draining lymph nodes. Intratumoral AdSDF-
1alpha administration elicited tumor-specific CTLs and the
antitumor activity was T cell-dependent. Shi et al. transfected
an expression vector, pCI-SDF-1, for SDF-1 into J558 my-
eloma cells and tested its ability to form tumors in BALB/c
mice. They detected the production of biologically active
SDF-1 in the culture supernatants of cells transfected with
pCI-SDF-1. SDF-1-expressing J558/SDF-1 tumors invariably
regressed in BALB/c mice and were infiltrated with CD4+ and
CD8+ T cells. Regression of the J558/SDF-1 tumors was
dependent on both CD4+ and CD8+ T cells. Furthermore,
immunization of mice with engineered J558/SDF-1 cells
elicited the most potent protective immunity against J558
tumor challenge in vivo, compared to immunization with J558
alone, and this antitumor immunity mediated by J558/SDF-1
tumor cell vaccination in vivo appeared to be CD8+ CTL
dependent. The authors concluded that SDF-1 has natural

Fig. 1. Chemoattraction activity for cells expressing specific recep-

tors in vitro induced by transfection of Ad-RGD-chemokines into

A549 cells. Chemoattractant activity of culture supernatants of A549

cells transfected with each chemokine gene-carrying Ad-RGD

against the stable specific chemokine receptor-expressing cells. The

culture supernatants of intact A549 cells, Ad-RGD-Luc-transfected

A549 (Luc/A549) cells, and chemokine gene-transduced A549 cells

were prepared and diluted with the assay medium. The fractional

values within the parentheses in each panel express the dilution

factor. These samples and recombinant chemokines dissolved with

the assay medium were added to a 24-well culture plate. Cells

expressing specific receptors for CCL17 and CCL22 (L1.2/CCR4),

CCL20 (L1.2/CCR6), CCL19 and CCL21 (L1.2/CCR7), CCL27

(L1.2/CCR10), XCL1 (L1.2/XCR1), or CX3CL1 (L1.2/CX3CR1)

were suspended with the assay medium and placed in a Chemo-

taxicell-24 installed in each well at 1�106 cells /well. Likewise,

parental L1.2 cells for these transfectants were prepared and added

to the Chemotaxicell-24. Cell migration was allowed for 2 h at 37-C

in a 5% CO2 atmosphere. The cells that migrated to the lower well

were lysed and quantified using a PicoGreen double-stranded DNA

quantification reagent. The data are expressed as the meanTSE of the

triplicate results. (Reproduced from Okada et al. [40]).
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adjuvant activities that might augment antitumor responses
through their effects on T cells and could thereby be important
in gene transfer immunotherapies for some cancers. Also, the
CX3C chemokine fractalkine encoded in the adenovirus
AdFKN and intratumorally injected into C26 and B16F10
tumors markedly induced tumor growth compared to controls
(97). Histologic examination of the tumor tissues revealed an
abundant infiltration of NK cells, DCs, and CD8+ T lympho-
cytes 3 and/or 6 days after treatment with AdFKN. Splenocytes
from mice treated with AdFKN developed tumor-specific
CTLs. The antitumor effects were T cell and NK cell-
dependent. This study suggests that fractalkine is a suitable
candidate for immunogene cancer therapy because fractalkine
induces both innate and adaptive immunity.

For evaluating tumor-suppressive effect of chemokines,
eight chemokines were encoded in recombinant Ad-RGD
vectors and chemoattraction activity for cells expressing
specific receptors CCL17 and CCL22 (L1.2/CCR4), CCL20
(L1.2/CCR6), CCL19 and CCL21 (L1.2/CCR7), CCL27
(L1.2/CCR10), XCL1 (L1.2/XCR1), or CX3CL1 (L1.2/
CX3CR1) in vitro induced by tranfection of Ad-RGD-
chemokines into A549 cells was investigated. The results
demonstrated the chemotactic activity for specific receptor-
expressing cells (Fig. 1) (40). In another study, OV-HM
ovarian carcinoma was used as a model and the antitumor
effect of chemokines was investigated. Of the evaluated
chemokines, ILC/CCL27 had a significant antitumor effect,
and both CCL27 and CX3CL1 induced the accumulation of
CD3+ T cells and NK cells in the tumor upon transfection
into tumor cells through the Ad-RGD vector (Fig. 2).
Additional experiments demonstrated that the antitumor
activity is T cell-dependent and both CD4+ and CD8+ are
involved in the response (39).

Chemokine macrophage-derived chemokine /CCL22
also recruits macrophages, monocytes, activated T cells,
DCs, B cells, and NK cells (106, 107). Likewise, the EBI1-
ligand chemokine/CCL19 and secondary lymphoid-tissue
chemokine/CCL21 have chemoattractant activity for T cells,
B cells, NK cells, and DCs (108).

Though the findings of recent studies provide experi-
mental evidence that the introduction of chemokines into the
tumor environment results in the recruitment of relevant
leukocyte subsets in vivo and decreases tumorigenicity of
malignant cells, most of the studies used ex vivo methods and
few studies have demonstrated that transfection with a
chemokine alone can induce a complete regression of tumors,
especially in an established tumor mass. Chemokine genes
such as those encoding XCL1 and CCL3 have been trans-
fected into tumor cells and although they attracted T
lymphocytes to the malignant tissue, they failed to induce
regression (109,110). A combination of those chemokines
with other cytokines or costimulatory molecules, however,
ultimately activates lymphocytes, such as IL-2, CD80, and IL-
12, resulting in a marked antitumor effect. The results
suggested that the accumulation of immune cells into a
tumor itself does not induce notable tumor regression.

Therefore, a potent strategy of combining cytokines and
chemokines was proposed (109,111). This strategy, termed
Fattraction-expansion_, is based on the assumption that if
more immune cells are recruited to the tumor site by
chemokines and subsequently activated by cytokines, the

antitumoral immune response will be significantly enhanced.
Although a few promising results showed antitumor synergy
induced by chemokines and cytokines, the mechanisms are
poorly understood and further research is required. Further-
more, the gene carriers, the tumor cells, the types of
chemokines and cytokines, as well as the doses used all
influence the synergistic activity induced by the chemokines
and other immunoregulators.

As described in a previous report, CCL27 suppressed
tumor growth through transfection in vitro (39). Intratumoral
injection of Ad-RGD-CCL27, however, did not regress the
preexisting ovarian tumor, even though many T cells were
recruited to the tumor nodule. Further studies revealed that
the T cells that accumulated in the tumor expressed little or
no perforin, indicating that they were not activated. Then a
combined strategy using both CCL27 and IL-12 was studied
and this combination induced a synergistic antitumor effect
that recruited more immune cells than IL-12 alone and the T
cells that accumulated were activated, which did not occur
when CCL27 alone was used (112).

The results described above were supported by the
finding that among the eight kinds of chemokine-expressing
Ad-RGDs (CCL17, CCL19, CCL20, CCL21, CCL22, CCL27,
XCL1, and CX3CL1), intratumoral injection of Ad-RGD-
CCL19 most efficiently induced T cell infiltration into
established B16BL6 tumor parenchyma, whereas most of
these T cells were perforin-negative in immunohistochemical
analysis (113). Additionally, the growth of Ad-RGD-CCL19-
injected tumors as well as that of other tumors treated with
each chemokine-expressing Ad-RGD decreased only slightly,
indicating that the accumulation of naive T cells in tumor
tissue does not effectively damage the tumor cells. In tumor-
bearing mice, in which B16BL6-specific T cells were elicited
by DC-based immunization, intratumoral injection of Ad-
RGD-CCL17, -CCL22, or -CCL27 considerably suppressed
tumor growth and attracted activated T cells. On the other
hand, Ad-RGD-CCL19 injection into the immunized mice
slightly increased the infiltration of T cells compared to
treatment with a control vector. Therefore, although Ad-
RGD-mediated chemokine gene transduction into established
tumors might be very useful for enhancing the number of
tumor-infiltrating immune cells, a combination treatment that
can systemically induce tumor-specific effector T cells is
necessary for satisfactory antitumor efficacy.

In summary, the findings of recent studies provide
experimental evidence that the introduction of chemokines
into the tumor environment results in the recruitment of
relevant leukocyte subsets in vivo and decreases tumorige-
nicity of malignant cells. In addition, the combination of
chemokines with other immunostimulatory factors provides
enhanced and long-term antitumor immunity. Consequently,
chemokines might act as potent natural adjuvants for
experimental antitumor peptide-pulsed DCs; direct coupling
to tumor antigens or immunostimulatory cytokines results in
synergistic antitumor activity and represents a way to reduce
toxic side effects.

Tumor Metastasis and Angiogenesis Induced by Chemokines

As described above, chemokines not only display
chemotactic ability for immune cells, but are also involved
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in many physiologic functions such as inflammation, elimina-
tion of infection, tissue repair, cardiovascular disease, allergy,
and cancer. Therefore, their effects on tumors are also
controversial. Although the studies described above demon-
strate that chemokines can induce antitumor effects through
transfection of tumor cells in vitro or directly when injected
into the preexisting tumor nodules, several studies report that
some chemokines enhance tumorigenicity and induce tumor
metastasis and angiogenesis. Therefore, the chemokine used
for cancer treatment must be chosen carefully (114–117).

A novel chemokine, VCC-1, which is co-regulated in
tumors and angiogenesis model systems with vascular endo-
thelial growth factor expression, was recently reported to
have a possible role in angiogenesis and in the development
of tumors in some tissue types (114). VCC-1 is upregulated
by 3- to 24-fold in 71% of breast tumors. In Northern blot
analysis of human tissues, a 1-kb band representing VCC-1
was detected in lung and skeletal muscle. Murine VCC-1
expression is detected in lung as well as thyroid, submaxillary
gland, epididymis, and uterus tissues by slot blot analysis. In

situ hybridization of breast carcinomas showed strong
expression of the gene in both normal and transformed
mammary gland ductal epithelial cells. In vitro, VCC-1
expression was increased almost 100-fold in human micro-
vascular endothelial cells grown on fibronectin. In addition,
in the mouse angioma endothelial cell line PY4.1, VCC-1 was
over-expressed by 28-fold 6 h after the induction of tube
formation. Finally, 100% of mice injected with NIH3T3 cells
over-expressing VCC-1 developed rapidly progressing
tumors within 21 days, whereas there was no detectable
growth in control mice injected with NIH3T3 cells containing
the vector alone. These results strongly suggest that VCC-1 is
involved in angiogenesis and possibly in the development of
tumors in some tissue types. In another study, Kuroda
reported that the expression of MCP-1 was associated with

macrophage infiltration and tumor vessel density in human
gastric carcinomas (115). The human MCP-1 gene cloned
into the BCMGS-Neo expression vector was transfected into
the human gastric carcinoma TMK-1 cell line. There was no
difference in in vitro proliferation between MCP-1-trans-
fected TMK-1 cells and mock-transfected cells; however,
MCP-1 transfectants induced tumor growth in ectopic
xenografts and increased tumorigenicity and induced lymph
node metastases and ascites in orthotopic xenografts. In both
ectopic and orthotopic xenograft models, strong infiltration
of macrophages was observed within and around the tumors
after implantation of MCP-1 transfectants. The microvessel
density was significantly higher in tumors produced by MCP-
1 transfectants than in control tumors. These findings suggest
that MCP-1 produced by gastric carcinoma cells regulates
angiogenesis via macrophage recruitment.

On the other hand, SDF-1 (CXCL12) also has an
important role in chemotaxis of cancer cells and in tumor
metastasis through its cognate receptor CXCR4. Kang et al.
analyzed the expression of CXCL12 and its relation to
clinicopathologic features and clinical outcomes in human
breast cancer (116). SDF-1 expression was identified in
MRC5, MDA-MB-435s, and MDA-MB-436 cell lines.
MDA-MB-231 cells transfected with a mammalian expres-
sion cassette encoding CXCL12 exhibited significantly great-
er invasion and migration potential. It was most notable that
the levels of CXCL12 correlated significantly with overall
survival and incidence-free survival. In another study by the
same group, CXCL12-knockout MDA-MB-435s cells had a
slower growth rate over a 7-day period compared with the
respective control and wild-type MDA-MB-435s cells. In
contrast, the growth of the CXCL12-transfected MDA-
MB-231SDF1+/+ cells was markedly enhanced when compared
with wild-type and vector control cells. Breast cancer cell lines
with an autocrine CXCL12-CXCR4 signaling pathway, dis-

Fig. 2. Accumulation of immune cells in ovarian carcinoma in vivo by transfection of chemokine-encoding adenovirus vectors. Left: CD3-

positive lymphocytes infiltrated into OV-HM tumors infected with Ad-RGD-mCCL27 and Ad-RGD-mCX3CL1. a–d Representative

immunohistochemical appearance of tumor nodules from mice inoculated intradermally with 1�106 OV-HM cells infected with a none, b Ad-

RGD, c Ad-RGD-mCCL27, or d Ad-RGD-mCX3CL1. Right: NK cells infiltrated into OV-HM tumors infected with Ad-RGD-mCCL27 and

Ad-RGD-mCX3CL1. e–h Representative immunohistochemical appearance of tumor nodules from mice inoculated intradermally with 1�106

OV-HM cells infected with e none, f Ad-RGD, g Ad-RGD-mCCL27, or h Ad-RGD-mCX3CL1. (Reproduced from Gao et al. [39]).
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played aggressive behavior, including increased invasiveness
and migration, together with faster growth (117).

Another chemokine, CXCL1, mediates the proliferation
of glia progenitor cells during neural development. Malignant
gliomas are thought to arise from glia progenitors or their
differentiated counterparts, astrocytes or oligodendrocytes.
Zhou et al. reported that resected glioma specimens were
strongly immunoreactive for CXCL1 expression in cells with
tumor cell morphology (118). In culture, a U251 glioma line
transfected to overexpress CXCL1 had increased motility
and invasiveness. CXCL1 transfectants increased the expres-
sion of several proteins associated with migratory behavior,
including matrix metalloproteinase-2, beta1-integrin, and
SPARC. Implantation of CXCL1 glioma clones into the
brains of nude mice decreased survival time in the mice,
which was associated with the formation of larger intracere-
bral tumors compared with mice implanted with control
vector lines. These results implicate the involvement of
CXCL1 in gliomas and suggest that the dysregulation of a
glia proliferative factor contributes to tumorigenesis.

Dendritic Cell-Based System for Cancer Immunotherapy

Cell-based approaches to treat cancer include the adop-
tive transfer of immunologic effector cells such as tumor-
specific CTLs and cell-based tumor vaccines (119–121).
Cell-based tumor vaccines often consist of autologous or
allogeneic tumor cells that can be genetically modified (122–
125), or they are based on professional antigen-presenting
cells such as DCs loaded with TAAs (126–129). Alternatively,
DCs might be fused with tumor cells or genetically modified to
express TAAs and/or immunostimulatory genes.

DCs are the most potent specialized antigen-presenting
cells for initiating antigen-specific immune responses. DCs
are widely distributed in vivo and highly express surface
levels of major histocompatibility complex (MHC) class I and
class II adhesion and costimulatory molecules, all of which
assist in T cell activation (130). After antigen acquisition and
processing, DCs migrate via lymph vessels or blood to the T
cell areas of regional lymphoid tissues, where they present
MHC class I- and II-restricted peptides to naı̈ve T cells (131).
TAA-containing DCs are currently used as cellular vaccines
in clinical trials of cancer immunotherapy (132–137). In
preclinical and clinical studies, mostly in vitro generated ma-
ture monocyte derived DCs in combination with TAAs are
used for the treatment of advanced cancer patients (138, 139).
Also, antigen-bearing DCs have been used as Bnatural
adjuvants__ in numerous clinical trials for the immunotherapy
of melanoma (140). Selected clinical trials of DC-based
cancer therapies are listed in Table 2. The majority of studies
showed that DC-based vaccination of melanoma patients
provides a safe approach to anticancer immunotherapy that
can be effective in some patients with only minimal side
effects (141). The most promising results were obtained after
vaccination with RNA-transfected DCs in a small cohort of
renal cancer patients (132). T cell activity was detected in the
majority of patients evaluated after vaccination and 7 of 10
patients were still alive after a mean follow-up of 19 months,
which are encouraging results. There are several limitations of
the current DC-based vaccination strategies, however, includ-
ing: (1) immune evasion of tumor cells by downregulation of

surface (MHC, costimulatory molecules, epitopes) or intra-
cellular molecules; (2) secretion of soluble immunosuppres-
sive cytokines by tumor cells that convert immature DCs into
tolerogenic DCs; (3) induction of regulatory T cell through
tolerogenic DCs; and (4) presence of naturally occurring,
antigen-specific regulatory T cells (140). Therefore, despite
repeated T cell activation with antigen loaded DCs, only
rarely does DC immunization induce stable disease or
regression of tumor metastases at the level of clinical
responses (138,142,143).

On the other hand, the vaccine efficacy of TAA peptide-
pulsed DCs might be limited in vivo because peptides pulsed
onto DCs only transiently bind to MHC molecules due to
variations in peptide binding affinities, peptide–MHC com-
plex dissociation, and MHC turnover (144). Additionally, the
use of peptide-pulsed DCs is greatly dependent upon
identification of the TAA peptide epitopes corresponding
to the MHC haplotype of the patient. To solve these
problems, introduction of the TAA gene into DCs has been
explored. Transduction of DCs with TAA genes might allow
for constitutive expression of the full-length protein, leading
to prolonged antigen presentation in vivo, as well as
presentation of multiple or unidentified antigen epitopes
appropriate to MHC class I, and possibly class II molecules.

Generally speaking, gene introduction efficiency and
expression efficiency in DCs is very low when using
conventional gene transduction methods, such as lipofection,
electroporation, or conventional Ad vector infection. In a
previous study, we demonstrated that Ad-RGD could more
efficiently transduce a gene into DCs than conventional Ad
vectors (94). Comparison of immunologic properties and
vaccine efficacy of DCs transduced with the antigen gene by
Ad-RGD and conventional Ad vectors indicated that DCs
transduced with the antigen gene by Ad-RGD more effi-
ciently presented antigen peptides via MHC class I molecules
in a vector particle-dependent manner and induced an
antigen-specific CTL response by vaccination than did DCs
transduced with the antigen gene by conventional Ad vectors
(132,144). Moreover, vaccination with DCs transduced with
an antigen gene by Ad-RGD induced antigen-specific CTLs
and an equal or greater antitumor effect against challenge
with antigen-expressing tumor cells while using lower doses
of Ad vectors for infection or fewer cells for immunization
than a vaccination procedure using DCs transduced with an
antigen gene by conventional Ad vectors. In addition, DC
maturation was promoted by efficient expression of the
antigen gene by Ad-RGD, and was accompanied by elevated
expression of MHC class I and II molecules and adhesion
and/or costimulatory molecules such as CD40, CD54, CD80,
and CD86, as well as the production of T cell stimulatory
cytokines.

On the other hand, another potential cause of the
disappointing results of DC-based immunotherapy for cancer
is insufficient investigation and understanding of methods
that can improve the trafficking of DC vaccines from the
administration site to lymphoid tissues. In addition, immune
effector cells activated by TAA-presenting DC vaccines
should accumulate more efficiently in tumor tissue to injure
tumor cells by cell–cell contact. Therefore innovative
approaches capable of better controlling the trafficking and
biodistribution of DC vaccines and immune effector cells are
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needed to overcome the limitations of current DC-based
immunotherapy for cancer. On the basis of the serial immune
mechanisms, the degree of accumulation of administered DC
vaccine in lymphoid tissues, where they present MHC class I
and II-restricted peptides to naive T cells, is a factor in
determining the therapeutic effects in DC-based immuno-
therapy. Because optimal DC conditioning for enhancing the
migratory ability has not yet been established, however, very
few DC vaccines in currently available DC-based immuno-
therapies are capable of migrating from the administration
site to regional lymphoid tissue (138,142,144).

In recent years, there have been many reports on
chemokine-chemokine receptor coupling in DC-migration
from peripheral tissue to lymphoid tissue. For example, DC-
migration to secondary lymphoid tissues is inhibited in
CCL21 expression-defective plt/plt mice (145) and inhibition
of DC-migration to secondary lymphoid tissues occurs in
CCR7-knockout mice (146). Based on these results, the
association between CCL21, which is produced and secreted
constitutively in lymphoid tissues and lymphatic vessels, and
CCR7, a seven-transmembrane domain G protein-coupled
receptor whose expression is enhanced on the surface of
maturing DCs, has a central role in the control of DC-

migration from peripheral tissue to lymphoid tissues. There-
fore, DCs, which are not only introduced with antigens but
also exhibit enhanced CCR7-expression, might positively
migrate to lymphoid tissue and efficiently activate the host
immune system after administration to a living body.

Efficient CCR7-gene transduction to DCs is proposed as
a preparatory method for this novel Blymphoid tissue-
directivity DC^ vaccine (Fig. 3). CCR7/DCs, which are DCs
transfected by CCR7-encoding Ad-RGD, acquire strong
chemotactic activity for CCL21 and exhibit an immunophe-
notype similar to mature, but not immature, DCs with regard
to MHC/costimulatory molecule-expression levels and allo-
genic T cell proliferation-stimulating ability, while maintain-
ing inherent endocytotic activity (147). Importantly, CCR7/
DCs injected intradermally into mice accumulate in draining
lymph nodes approximately 5.5-fold more efficiently than
control Ad-RGD-transduced DCs. Reflecting these proper-
ties of CCR7/DCs, DC vaccines genetically engineered to
simultaneously express endogenous antigen and CCR7 could
elicit a more effective antigen-specific immune response in
vivo using a lower dose than DC vaccine transduced with
antigen alone. Therefore, the application of CCR7/DCs
having positive migratory ability to lymphoid tissues might

Fig. 3. Enhancement of DC migration to lymphoid tissues by chemokine receptor expression on DCs. Increasing the migratory ability of a DC

vaccine toward lymphoid tissue would remarkably improve the efficacy of DC-based immunotherapy. The chemokine receptor (CCR7)

facilitates DC migration to lymphoid tissues. Superior lymphoid tissue-accumulation of DCs transduced with the CCR7 gene (CCR7/DCs) is

advantageous as a vaccine carrier because it efficiently activates immune effector cells in regional lymph nodes.
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contribute to reduce the effort and cost associated with DC
vaccine preparation by considerably reducing the DC vaccine
dose needed to achieve effective treatment by DC-based
immunotherapy. In another report, Yang et al. used a
different strategy: they transduced DCs with an adenovirus
vector expressing secondary lymphoid chemokine (CCL21)
and evaluated its antitumor activity in a murine model of
spontaneous bronchoalveolar cell carcinoma (148). The
transgenic mice (CC-10 TAg) expressed the SV40 large T
antigen (TAg) under the Clara cell promoter, developed
bilateral, multifocal, and pulmonary adenocarcinomas, and
died at 4 months of age as a result of progressive pulmonary
tumor burden. A single intratracheal administration of
CCL21 gene-modified DCs (DC-AdCCL21) markedly re-
duced the tumor burden with extensive mononuclear cell
infiltration of the tumors. The reduced tumor burden was
accompanied by the enhanced production of type 1 cytokines
such as interferon-gamma, IL-12, and GM-CSF and anti-
angiogenic chemokines such as CXCL9 and CXCL10. At the
same time, there was a concomitant decrease in the
immunosuppressive molecules IL-10, transforming growth
factor-beta, and prostaglandin E(2) in the tumor microenvi-
ronment. The DC-AdCCL21 treatment group had a signifi-
cantly greater percentage of tumor-specific T cells releasing
interferon-gamma compared with the controls. Continuous
therapy with weekly intranasal delivery of DC-AdCCL21
significantly prolonged median survival time in the CC-10
TAg mice. Both innate NK and specific T cell antitumor
responses significantly increased following DC-AdCCL21
therapy. These results provide a strong rationale for further
evaluation of intrapulmonary-administered DC-AdCCL21 to
regulate tumor immunity and genetic immunotherapy for
lung cancer.

DCs genetically modified with CX3CL1 ex vivo to
overexpress CX3CL1 and induce immune cell migration to
enhance the T cell-mediated cellular immune response with a
consequent induction of antitumor immunity to suppress
tumor growth were also developed (149). Different mouse
cancers (B16-F10 melanoma, H-2b, and Colon-26 colon
adenocarcinoma, H-2d) were established and treated with
intratumoral injection of bone marrow-derived DCs that was
modified in vitro with an RGD fiber-mutant adenovirus
vector expressing mouse CX3CL1 (Ad-CX3CL1). In both
tumor models tested, treatment of tumor-bearing mice with
Ad-CX3CL1-transduced DCs significantly suppressed tumor
growth and increased survival compared to control mice.
Immunohistochemical analysis of tumors treated with direct
injection of Ad-CX3CL1-transduced DCs demonstrated that
the treatment resulted in an accumulation of CD8+ T cells
and CD4+ T cells in the tumor milieu, leading to the
activation of immune-relevant processes. Consistent with
the finding, the intratumoral administration of Ad-
CX3CL1-transduced DCs evoked tumor-specific CTLs,
which resulted from in vivo priming of Th1 immune
responses in the treated host. In addition, the antitumor
effect provided by intratumoral injection of Ad-CX3CL1-
transduced DCs was completely abolished in CD4+ T cell-
deficient mice as well as in CD8+ T cell-deficient mice. These
results indicate that genetic modification of DCs with a
recombinant CX3CL1 adenovirus vector might be a useful
strategy for cancer immunotherapy protocols.

DIRECTIONS AND DEVELOPMENTAL STRATEGIES
FOR SUCCESSFUL CANCER THERAPY BASED
ON IMMUNE CELL RECRUITMENT
AND CELL-BASED THERAPY

Although the results from the above studies are encour-
aging, the strategies for successful cancer therapy based on
immune cell recruitment remain to be elucidated. The
findings of recent studies provide experimental evidence that
introducing chemokines into the tumor environment results
in the recruitment of relevant leukocyte subsets in vivo and
decreases tumorigenicity of malignant cells. Chemokines
have been used in only a few clinical trials. The results of
pilot studies suggest that the combination of chemokines with
other therapeutic genes or approaches that efficiently induce
the activation of immune cells provide enhanced and long-
term antitumor immunity. Also, chemokines might act as
potent natural adjuvants for experimental antitumor peptide-
pulsed DCs; direct coupling to tumor antigens or immunos-
timulatory cytokines results in synergistic antitumor activity
and represents a way to reduce toxic side effects.

On the other hand, whether or not DC vaccinations can
provide a significant, long-term benefit in clinical cancer
treatment also remains to be determined. There are several
limitations of the current DC-based vaccination strategies,
such as immune evasion of tumor cells by downregulation of
surface or intracellular molecules; induction of regulatory T
cells through tolerogenic DCs; secretion of soluble immuno-
suppressive cytokines by tumor cells that convert immature
into tolerogenic DCs, etc. To improve the clinical efficiency
of DC tumor vaccination trials, several key points should to
be considered (150, 151). The search for highly immunogenic
antigen/peptides must be intensified, not only to possibly
improve clinical benefit, but also to monitor the immunologic
response; DCs should be modified with functional genes such
as a-GalCer, tumor-mRNA, and PSA peptide, to enhance
their anti-tumor efficiency; DCs should be combined with
chemokine receptors to facilitate their migration to lymph
nodes; DCs should be combined with cytokines such as
interferon-g or with hyperthermia ito enhance DC function;
and a standard protocol should be developed for DC
generation and activation to improve the reproducibility of
the vaccination procedure and allow for a comparison of the
results from different studies.

CONCLUSION

In vivo control of immune cells such as T cells and NK
cells, or DCs to tumors or lymphoid tissues, is very useful for
enhancing the efficacy of cancer immunotherapy. Therefore,
many approaches that can enhance the recruitment of
activated immune cells and the development of a DC-based
system have been investigated. These efforts are expected to
greatly improve antitumor responses and lead to an effective
clinical application for cancer therapy.
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